Acoustic & Articulatory Analysis of Tone in Four Languages of Nepal

Kristine A. Hildebrandt SIU Edwardsville khildeb@siue.edu

The Setting

- Sociolinguistic, lg. usage and lg. attitude surveys now ongoing parallel to this acoustic/articulatory study of the segmental & suprasegmental systems so far indicate that many Gyalsumdo crossed the Larke Pass from Gorkha District, but there are some familial linkages to Mustang District too
- Also, Manang-Gurungs largely either claim Manang as their long-term ancestral home, or else they narrate ancestral movement (via marriage) from Lamjung to the south

The Setting

- Mazaudon (2005, 2012), Mazaudon & Michaud (2006, 2008): fieldwork, including instrumental-based methods, can shed light on often difficultto-describe tonal characteristics and possibly reveal evolutionary paths in languages of different genealogical distances
- (And, an overlaying of instrumental investigations alongside the sociolinguistic dimensions can also uncover possible extra-linguistic factors as relevant to unexpected observations)
- This talk represents in some ways both an initial attempt employ these complementary methods within Manang, but also part of an ongoing (15-year!) effort to answer the deceptively simple question: "What is tone?" in these languages

Tamangic Tonogenesis

		Tamang	Gurung	Thakali	Manange
*HI	/1/	$54 \pm asp$	33 ±asp	54	$22 \pm asp$
	/2/	$55 \pm asp$	54 ±asp	44	44 \pm asp
*LOW	/3/	33/22 fi, + asp	11 fi, -asp	11 fi, -asp	52 -asp (only obs)
	/4/	211 fi, +asp, [b]?	12 fi, -asp, [b]?	121 fi, -asp, [b]	42 + asp (only obs)
(fi	= bro	eathy/murmur phona	tion; [b] = possi	ble phonetic voici	ng effect of onset;

Chao numbering system where 5 = high, 1 = low)

 However: Mazaudon & Michaud (2008, 2006), Hildebrandt (2007), Mazaudon (2005)-- high degrees of idiolectal & dialectal variation, phonetic correlates differently weighted across languages, varied role of F0 in defining the systems

WT Initials	Modern Reflexes	e.g. in Kyirong Tib.	e.g. in Nubri
voiced	LOW, voiceless	"Mid", unvoiced	low voiced or
	$(\pm asp)$		voiced breathy
pfx +voiced	LOW, voiced/unasp	"Low", ±voiced,	voiced modal or
		breathy	voiced breathy, or
			voiceless breathy
voiceless (asp)	(MID-)HIGH, voiceless	"High", aspirated	high voiceless asp
	asp		
pfx + voiceless	HIGH, voiceless unasp	"High"	high voiceless unasp

Evolution of Tibetan Tones

• Additionally, WT finals -g, -d, -s, -/ns > modern-system contour tones (with corresponding long vowels in e.g. Kyirong)

	Data & Methods
The Bigger Project	Duiu & Meinous
• Pitch (5 measurement points, F0),	
relative vowel intensity (dB), relative	
vowel/vcd onset jitter (%), obstruent	Sub-set for This Talk
onset V.O.T., vowel duration, vowel spectral tilt (comparison of the	• M-G: all measurements done
amplitude of F0 to H2)	(so far also the only lg. w/serious perception tests conducted)
 Electroglottographic Analysis: closed- quotient value (EGG CQ) of all voiced 	• Gyal: all measurements done
onsets (including sonorants) and initial	• Nar: no EGG
vowels	• Manange: no EGG, spectral tilt, jitter, or intensity
	·

Data & Methods

- Words were recorded in isolation (three repetitions) & frame-medial or final context (three repetitions)
- Gurung *kwe* 'bee' & *la-p*A 'drive.away-NOM'
- For nouns: toso ηA-e kwe mro-e-po [now 1sg-erg bee see-ASP-NOM]
 'Now I see a bee.'
- For verbs: toso ηA-e <u>la-pA</u> tsA-ti-po [now lsG-ERG drive.away-DEONT want-ASP-NOM] 'Now I want to <u>drive away</u>.'
- •Gyalsumdo to 'stone' & to 'walk/go'
 - For nouns: η_A to t^hoη-sõ [1sg stone see-TAM/EVID] 'I saw the stone.'
 - For verbs: ηλ tλntλ <u>to-ke</u> (re) [1sg now walk/go-TAM/EVID (EVID)] 'I am <u>walking</u> now/I <u>walk</u> now.'

Three Gurung	g Tone Models:	Data	& Methods
	Kaski Gurung (Glover 1974)	Manange (Hildebrandt 2004)	Tamu (TSS 2004)
Tone 1	"clear, relaxed"	"low, level"	modal (low)
Tone 2	"clear, intense"	"high, level"	modal (high)
Tone 3	"breathy, low"	"very high, falling"	breathy
Tone 4	"breathy, rising"	"mid, falling"	breathy (high)
Justification	authoritative, long-standing reference for Gurung tone	a sister language with which MG people have had long-term, intense contact	a newer account of multiple Gurung dialects w/ large lexicon, but not MG

Word/Gloss	Kaski	Manange	Tamu
ti 'house'	/2/	/4/	/1/
þoʻpopped corn'	/2/	/4/	/3/
to 'pillar'	/3/	/2/	/4/
kã 'chin'	/2/	/1/	/2/~/3/

Tone models for the other languages:

Data & Methods

- Gyalsumdo: WT correspondences (keeping an eye to what Kyirong and Nubri display)
- Manange: my prior work based on my own fieldwork, dissertation, grammar and other published information (Mazaudon 1978, Nagano 1984, Hoshi 1986a, b)

• Nar(-Phu): Noonan (2003 and notes) and Mazaudon (1996)

Tone	Chao	Auditory Prop	erties	Onset Conson	ant Properties		
/1/	22	Low & Level		Not Applicabl	e		
2/	44	High & Level		Not Applicabl	e		
3/	52	High & Falling		If initial C is [+ obstruent], unaspirated		
(4/	42/32	Mid & Falling		If initial C is [+ obstruent], aspirated		
	ge Ton		TONE	NUMBER	PITCH CONTOUR, O	CHAO SCALE	EXAMPLE
	andt 20 , 2005)		1		53		nâŋ 'reciprocal obligation'
2004	r, 2003)		2		44		naŋ 'full'
			3		12		nfiaŋ 'planted in rows'
			4		21 or 31		nhâŋ 'in'
				Nar-Phu To	ones (Noonan 2003 3	39)	

Observations & Analysis

16

- What can we look to as modern reflexes, or as features to the tonogenetic developments in these languages?
- · Just what kind of variation is possible amongst any generalizations?
- Pitch-melody (within/across the two registers)
- · Behavior of initial obstruents (VOT)
- · Voicing of vowels with respect to Electroglottographic measurements

0		Averages, Monos	yllabics, Tamu Mode	I		
	F1	F2	м1	M2		
-					-1	
					2 3	
					-4	
P1 P2 P	P4 P5	P1 P2 P3 P4 P5	P1 P2 P3 P4 P5	P1 P2 P3 P4 P5		
P1 P2 P		P1 P2 P3 P4 P5		P1 P2 P3 P4 P5	el	
<u>P1 P2 P</u> 3	3 P4 P5	P1 P2 P3 P4 P5			-	M2
<u>P1 P2 P</u>			Averages, Monos	yllabics, Kaski Mode	-	M2
P1 P2 P	300 -		Averages, Monos	yllabics, Kaski Mode	-	M2
P1 P2 P	300 - 250 - 200 -		Averages, Monos	yllabics, Kaski Mode	-	M2
P1 P2 P	300 - 250 -		Averages, Monos	yllabics, Kaski Mode	-	M2

300	Mean F _o by Tor	ne, Monosyllabics, Fem	nale	250	Mean F _o b	y Tone, Monosyllab	ics, Male
250 (1) 200				200 (7) H) ⁶ 150			. <u> </u>
150	1	2	3	100	1	2	3
No o	clear evid	ence (yet) f	or additio	onal mel	ody dist	inctions w	ithin a h

-melo	1 5					4naly
			speakers (measure	ment point	s)
250		Averages, Monosyllab	bics, WI Series 1-4			
	F1	F2	м1	M2		
200						
					WT2	
					WT3	
150						
100 - P	P2 P3 P4 P5	P1 P2 P3 P4 P5	P1 P2 P3 P4 P5	P1 P2 P3 P4 P5		
four c	ategories	are not obvi	and but mb	TT // T 1 / A		4
		are not obvi	ous, but who	n W T 1/2	and WT 3/-	4 are
ged in		osed "high"				
Ŭ	to a propo		v. "low", th	e difference		
ged in	to a propo	osed "high"	v. "low", th	e difference		
Ŭ	to a propo Avera	osed "high" ages, Monosyllabics,	v. "low", the WT Merged 1/2 &	e difference		
Ŭ	to a propo Avera	osed "high" ages, Monosyllabics,	v. "low", the WT Merged 1/2 &	e difference	es are signi	
250	to a propo Avera	osed "high" ages, Monosyllabics,	v. "low", the WT Merged 1/2 &	e difference	es are signi	
250	to a propo Avera	osed "high" ages, Monosyllabics,	v. "low", the WT Merged 1/2 &	e difference	es are signi	
250	to a propo Avera	osed "high" ages, Monosyllabics,	v. "low", the WT Merged 1/2 &	e difference	es are signi	
250	to a propo Avera	osed "high" ages, Monosyllabics,	v. "low", the WT Merged 1/2 &	e difference	es are signi	

Observations & Analysis

· VOT differences on initials, Gyalsumdo (4 speakers)

• The male speakers show a strong tendency towards pre-voicing or else breathy onsets with words in WT 3 & WT 4 (those cases are not reflected in these bar-graphs)

Taman	gic Languages	s of Manang	Summary
Characteristics	Manange	M-G	Nar(-Phu)
pitch-melody	high-low & level- falling/contour	High-Low emerges only when compared to Manange model	High-Low
onset voicing	never voiced, but aspiration split in tones /3/ & /4/	no (real) evidence of voicing, and phonetic aspiration rare overall	lower VOT in low register
other cues			jitter?

Gyalsumd	0	Summary
My Proposal	Characte	rized by
"Hi" (WT 1/2)	Higher F0 (no contour diffs. y	
"Low" (WT 3/4)	Lower F0, tend obstruent voicing males, weak evide vocal fold closu obstruent asp	g, particularly by ence for shorter ire for vowels,

Summary

- · What is not showing any consistent patterning so far?
- Vowel duration
- Spectral tilt (F0-H2)
- Vowel Jitter (but female Nar speaker does show some increased jitter on tones /3, 4/)
- What from here?
- · Voicing properties on medial consonants
- · F0 properties manifested across larger units
- · Possibly additional CQ measurements across the nucleus

Final Remarks

34

- While still quite tentative (with parallel data collections planned for upper Manang in 2013 and 2014), this talk represents a first view to a systematic comparative examination of the phonetic manifestation of tone in these languages
- The situation observed for Manang-Gurung so far is particularly interesting when compared with other varieties spoken elsewhere in Nepal
- What are the consequences of language contact in such close proximity on these systems (and their emergent cues), especially in light of their relative diachronic youthfulness?

Final Remarks

- Gyalsumdo is surrounded by Manang-Gurung, but its system may be appreciated by quite different cues
- I'm particularly interested in the picture that will be painted additional measurements from recordings done with other speakers, alongside those of Nar-Phu, as these are the two languages of Manang that that show the greatest sudden interruption in available speakers below the age of 50

Thank You (full references supplied upon request) Thanks to Dubi Nanda Dhakal & Oliver Bond for help w/data collection Thanks to jillian Lowery & Cassidy Martin for assistance with data organization & coding Research supported by NSF 1149839 Thank you to Manang language communities for their participation